f07 — Linear Equations (LAPACK) f07fhc

NAG C Library Function Document
nag_dporfs (f07fhc)

1 Purpose

nag_dporfs (f07fhc) returns error bounds for the solution of a real symmetric positive-definite system of
linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement,
in order to reduce the backward error as much as possible.

2 Specification

void nag_dporfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const double a[], Integer pda, const double af[], Integer pdaf,
const double b[], Integer pdb, double x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

3 Description

nag_dporfs (f07thc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive-definite system of linear equations with multiple right-hand sides
AX = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_dporfs (f07thc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)x =0+ b
|5aij| < 5|%’| and [0b;| < B]by].
Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max ||
KA 1
where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] 07fhe.1

f07fhc NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo = Nag_Upper, then the upper triangular part of A is stored and A is factorized as
UTU, where U is upper triangular;

if uplo = Nag_Lower, then the lower triangular part of A is stored and A is factorized as
LLT, where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim| — const double Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).
On entry: the n by n original symmetric positive-definite matrix A as supplied to nag dpotrf
(f07fdc).

6: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array a.

Constraint: pda > max(1,n).

7: af[dim| — const double Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

On entry: the Cholesky factor of A, as returned by nag_dpotrf (f07fdc).

8: pdaf — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array af.

Constraint: pdaf > max(1,n).

9: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

10: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);

07fhe.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07fhc

11:

if order = Nag RowMajor, pdb > max(1, nrhs).

x[dim] — double Input/Output

Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix X is stored in x[(j — 1) x pdx + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On entry: the n by r solution matrix X, as returned by nag_dpotrs (f07fec).

On exit: the improved solution matrix X.

12: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.
Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).
13: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...
14: berr[dim] — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j=1,2,....n.
15: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

[NP3645/7] 07fhe.3

f07fhe NAG C Library Manual

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n* floating-point
operations. Each step of iterative refinement involves an additional 6n® operations. At most 5 steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2n?
operations.

The complex analogue of this function is nag_zporfs (f07fvc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

416 —3.12 056 —0.10 870 830
312 503 —08 1.18 ~1335 2.13
A=1 056 —083 076 o034]| 4 B= 1.89 1.61
~0.10 1.18 034 1.8 —4.14 5.00

Here A is symmetric positive-definite and must first be factorized by nag_dpotrf (f07fdc).

07fhe.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

9.1 Program Text

/* nag_dporfs (f07fhc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/

Integer berr_len, ferr_len, i, j, n, nrhs, pda, pdaf, pdb, pdx;

Integer exit_status=0;
Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */
char uplo[2];
double *a=0, *af=0, *b=0, *berr=0, *ferr=0, *x=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define AF(I,J) af[(J-1)*pdaf + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]

#define X(I,J) x[(J-1)#*pdx + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + T - 1]

#define AF(I,J) af[(I-1)*pdaf + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07fhc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("$1d%1ds*["\n] ", &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdaf = n;
pdb = n;
pdx = n;
#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;
#endif
ferr_len = nrhs;

berr_len = nrhs;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

! (af = NAG_ALLOC(n * n, double)) ||

(b = NAG_ALLOC(n * nrhs, double)) ||

! (berr = NAG_ALLOC(berr_len, double)) ||
! (ferr = NAG_ALLOC(ferr_len, double)) ||
! (x = NAG_ALLOC(n * nrhs, double)))

{
Vprintf ("Allocation failure\n");
[NP3645/7]

f07thc

f07fhe.5

f07fhc

exit_status = -1;
goto END;
}

/* Read A and B from data file, and copy A to AF and B to X
Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else

{

Vprintf ("Unrecognised character for Nag_UploType type\n'

exit_status = -1;
goto END;
}

if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; J <= n; ++j)
Vscanf ("s1f", &A(i,3));
¥
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3j)
Vscanf ("s1f", &A(i,J));
¥
Vscanf ("sx["\n] ");

}

for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= nrhs; ++3)
Vscanf ("$1f", &B(i,3));

Vscanf ("sx["\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)

{

for (i = 1; i <= n; ++1i)

/* Factorize A in the array AF */
fO07fdc(order, uplo_enum, n, af, pdaf, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07fdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

J07fhc.6

NAG C Library Manual

*/

')

[NP3645/7]

f07 — Linear Equations (LAPACK) f07fhc

E

}

/* Compute solution in the array X */
fO7fec(order, uplo_enum, n, nrhs, af, pdaf, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7fec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Improve solution, and compute backward errors and =*/

/* estimated bounds on the forward errors */

fO07fhc(order, uplo_enum, n, nrhs, a, pda, af, pdaf, b, pdb, x, pdx,
ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07fhc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution x/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$11l.1le%s", berr[j-11, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("%1ll.less", ferr[j-1], j%7==0 || j==nrhs 2"\n":" ");
ND:
if (a) NAG_FREE(a);
if (af) NAG_FREE(af);
if (b) NAG_FREE(Db);
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE (ferr);
if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

f0

-1

7fhc Example Program Data

4 2 :Values of N and NRHS
'L’ :Value of UPLO

4.16

3.12 5.03

0.56 -0.83 0.76

0.10 1.18 0.34 1.18 :End of matrix A

8.70 8.30

3.35 2.13

1.89 1l.01

4.14 5.00 :End of matrix B

9.3 Program Results

f0

S

D w N R

7fhc Example Program Results

olution(s)

1 2
1.0000 4.0000
-1.0000 3.0000
2.0000 2.0000
-3.0000 1.0000

[NP3645/7] 07fhe.7

f07fhc NAG C Library Manual

Backward errors (machine-dependent)

9.5e-17 5.2e-17
Estimated forward error bounds (machine-dependent)
2.3e-14 2.3e-14

07fhe.8 (last) [NP3645/7]

	f07fhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	a
	pda
	af
	pdaf
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

